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Abstract In the disease cystic fibrosis (CF), the most common
mutation delF508 results in endoplasmic reticulum retention of
misfolded CF gene proteins (CFTR). We show that the a-1,2-
glucosidase inhibitor miglustat (N-butyldeoxynojirimycin, NB-
DNJ) prevents delF508-CFTR/calnexin interaction and restores
cAMP-activated chloride current in epithelial CF cells. More-
over, miglustat rescues a mature and functional delF508-CFTR
in the intestinal crypts of ileal mucosa from delF508 mice. Since
miglustat is an orally active orphan drug (Zavesca�) prescribed
for the treatment of Gaucher disease, our findings provide the ba-
sis for future clinical evaluation of miglustat in CF patients.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The CFTR gene encodes the cystic fibrosis transmembrane

conductance regulator (CFTR) that is mutated in the genetic

disorder cystic fibrosis [1,2]. CFTR is an apical cAMP-acti-

vated Cl� channel present in epithelial cells [3,4]. Most CF pa-

tients have the delF508 mutation leading to misfolding and

retardation of the protein in the endoplasmic reticulum (ER)

[4–6]. The ER quality control machinery monitors the folding

and assembly of proteins, ensuring that only folded proteins

proceed along the secretory pathway [7]. N-glycosylation al-

lows the interaction of newly synthesized glycoproteins with

the chaperone system in the ER [5,8,9]. The chaperone caln-

exin is a ER lectin-like protein binding monoglucosylated

oligosaccharides, i.e., N-linked glycans of the form Glc-

NAc2Man9Glc1 resulting from the removal of the two outer

glucoses by glucosidases [8–10]. Recent evidences suggest that

inhibitors of ER calcium pumps correct the delF508 trafficking

defect through partial inhibition of delF508-CFTR/calnexin
Abbreviations: CF, cystic fibrosis; CFTR, CF transmembrane conduc-
tance regulator; Cst, Castanospermine; ER, endoplasmic reticulum;
Isc, short-circuit current; NB-DNJ, N-butyldeoxynojirimycin; NB-
DGJ, N-butyldeoxygalactonojirimycin
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interaction [11,12]. Moreover, overexpression of calnexin leads

to greater stability of delF508 in the ER [13] and a truncated

form of calnexin partially reversed the misprocessing of func-

tional delF508-CFTR [14].

In the present study, we hypothesized that by inhibiting the

deglucosylation of delF508 protein in the ER, glucosidase

inhibitors might prevent the interaction of delF508-CFTR

with calnexin and hence its entry in the degradation pathway.

To test this hypothesis, we used miglustat an N-alkylated imi-

no sugar (N-butyldeoxynojirimycin, NB-DNJ) and castano-

spermine, inhibiting ER a-1,2-glucosidase, and one inactive

imino-sugar analogue (N-butyldeoxygalactonojirimycin, NB-

DGJ) [15,16].
2. Materials and methods

2.1. Cells
Human nasal epithelial JME/CF15 [17], tracheal gland serous

CFKM4 [18] and pancreatic duct CFPAC-1 [19] cell lines were derived
from delF508 homozygous patients. Non-transfected CHO-K1, stably
transfected wt- and delF508-CHO cells and Cos-7 cells transiently
transfected with GFP-delF508-CFTR cDNA or GFP alone (denoted
Cos-7 mock) were used as described [20,21].

2.2. Immunoprecipitation and Western-blotting
CF15 cell lysates were incubated with monoclonal anti-human

CFTR antibody (2 lg, IgG2a clone 24-1, R&D Systems, USA) or
polyclonal rabbit anti-calnexin antibody (2 ll/ml, SPA-860, Stress-
gen, USA). Immunoblots were probed with monoclonal mouse
anti-CFTR antibody (10 lg/ml, IgG1 M3A7, Chemicon, USA), poly-
clonal rabbit anti-calnexin antibody (2 ll/ml, SPA-860) or mouse
anti-b tubulin antibody (1:200, Tebu-bio, USA). The protein levels
were expressed as densitometry and percentage of controls. Other
details [11].

2.3. Functional assay
Perforated whole-cell patch-clamp analysis was applied to CF15

cells. Patch electrodes (GC150-TF10, Harvard Apparatus, USA)
filled with intracellular solution (resistances of 3–4 MX) were con-
nected to the RK-400 amplifier (Biologic, France) through an Ag/
AgCl pellet. External solution (mM): 145 NaCl, 4 CsCl, 1 MgCl2,
1 CaCl2, 5 DD-glucose, 10 TES (pH 7.4, 315 mOsm). Intra-pipette
solution (mM): 113 LL-aspartic acid, 113 CsOH, 27 CsCl, 1 NaCl,
1 EGTA, 1 MgCl2, 3 Mg-ATP (ex-temporane), 10 TES (pH 7.2 with
CsOH, 285 mOsm) and amphotericin B (100 lg/ml) renewed every
2 h. Only cells with input resistance 615 MX were analysed. The
mean access resistance and whole cell capacitance were
12 ± 0.6 MX and 35 ± 4.3 pF (n = 44). Currents were obtained in re-
sponse to voltage steps from �80 to +80 mV in 20 mV increment.
Data were collected using pClamp 6.0.3 package software (Axon
Instruments, USA).
blished by Elsevier B.V. All rights reserved.

mailto:cnorez@ext.univ-poitiers.fr 


2082 C. Norez et al. / FEBS Letters 580 (2006) 2081–2086
CFTR Cl� channel activity was assayed on a cell population by the
iodide (125I) efflux technique as described [11]. All chemicals are from
Sigma Chemicals (St. Louis, MO) exept NB-DNJ and NB-DGJ (Tor-
onto Research Chemicals, Canada), forskolin and genistein (PKC
Pharmaceuticals, USA). CFTRinh–172 and TS-TM calix[4]arene were
provided by Dr. Bridges, University of Pittsburgh. Results are ex-
pressed as mean ± S.E.M. of n observations. Sets of data were com-
pared with Student’s t test using GraphPad Prism 4.0 (GraphPad
Software, USA). ns, non-significant difference; *P < 0.05; **P < 0.01;
***P < 0.001.
2.4. Ex vivo studies
Rotterdam delF508/delF508-CFTR mice (Cftrtm1 Eur), their litter-

mate controls (FVB inbred, 14–17 weeks old, weight between 20 and
30 g, kept on solid food in a pathogen-free environment) and Cftr-
KO mice (Cftrtm2 Cam) were used [22,23]. Muscle-stripped ileal mucosa
was incubated in William’s E-Glutamax medium supplemented with
Fig. 1. Miglustat prevents delF508-CFTR/calnexin interaction. (A) CFTR im
cells or not. Calnexin WB (lane 1) and non-immune mouse IgG (lane 2) wer
presented. From lanes 3 to 6 we compared IP CFTR/WB calnexin from cells i
incubated at 27 �C (lane 4) to the control 37 �C (lane 3). In the second exper
denoted Cst (lane 9) to the control 37 �C (lane 7). The calnexin intensity band
control (i.e., 37 �C: lane 3 for the first gel and lane 7 for the second gel). Then
treatment except for castanospermine n = 2. (B) Calnexin and b-tubulin WB f
protein). Histograms show the b-tubulin/calnexin ratio density band (n = 3). (
CFTR WB in CHO-wt lysates (lane 1) and non-immune rabbit IgG IP (lane
CFTR band B intensity expressed in % of control (1 < n < 2). Treatments are
(control), low-temperature (24 h, 27 �C), miglustat (2 h, 100 lM, 37 �C), ca
100 lM, 37 �C).
insulin (10 lg/ml) and dexamethasone (20 lg/ml). At different time
points, the compound was removed by repeated washings followed
by short-circuit current (Isc) measurements in mini-Ussing chambers
[24]. Western blotting was as described [25]. For immunohistochemis-
try, tissues were fixed in 4% (wt/vol) paraformaldehyde. Sections
(5 lm) were stained with the antibody R3195 (1:500) as described [25].
3. Results

3.1. Miglustat prevents delF508-CFTR/calnexin interaction in

CF15 cells

Analysis of CFTR immunoprecipitation on calnexin Wes-

tern blot showed that miglustat and castanospermine prevent,

by �75% and �50%, respectively, the delF508-CFTR/calnexin

interaction as compared to cells at 37 �C, treated by NB-DGJ
munoprecipitation (IP) on calnexin Western-blot (WB) in treated CF15
e used as positive and negative controls. Two separate experiments are
ncubated 2 h at 37 �C with miglustat (lane 5), with NB-DGJ (lane 6) or
iment, lanes 7–9, we compared miglustat (lane 8) and castanospermine
for each experimental condition was expressed as function of its own IP
the histograms report the mean ± S.E.M. of these data; n = 5 for each

rom untreated (lane 1) and treated cell (lanes 2–5) lysates (50 lg of total
C) Calnexin IP on CFTR WB in cells treated (lanes 3–6) or not (lane 2).

7) were used as positive and negative controls. Bar graph reports the
indicated below each lane or bar with a positive sign. Treatment: 37 �C
stanospermine denoted Cst (2 h, 100 lg/ml, 37 �C) or NB-DGJ (2 h,
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or maintained at 27 �C, a procedure known to rescue delF508-

CFTR to the cell surface [26] (see Fig. 1A). Glucosidase inhib-

itors have no direct effect on the production of calnexin itself

because the b-tubulin/calnexin ratio remains unchanged (see

Fig. 1B). Finally, the reverse co-immunoprecipitation (see

Fig. 1C) confirms that delF508-CFTR and calnexin form a

complex in the ER prevented by miglustat and to a lesser ex-

tent by castanospermine.

3.2. Rescue of functional delF508-CFTR by miglustat

Perforated patch-clamp technique was applied to 37 �C (see

Fig. 2A), low-temperature (see Fig. 2B), miglustat (see Fig. 2C)

or NB-DGJ-treated (see Fig. 2D) CF15 cells. Cl� currents

were first recorded in resting cells (see Fig. 2A–D, top traces)

and after stimulation by forskolin/genistein [11] (see Fig. 2A–
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Fig. 2. Rescue of functional delF508-CFTR in miglustat-treated cells. (A)–(D
by low-temperature (B), miglustat (C), NB-DGJ (D) or untreated (A). Top
genistein. Bottom traces: stimulation by forskolin/genistein + glibenclamide. T
each series of experiments. Numbers of analyzed cells are indicated. The ba
efflux curves in 37 �C, low-temperature-, miglustat-, castanospermine- or NB
genistein as indicated by the horizontal bar above the traces. Stimulation of m
glibenclamide, 500 lM DPC, 500 lM DIDS or 100 nM calixarene (F). n = 4
CFPAC-1, Cos7 GFP-delF508, Cos 7 mock, CHO-K1 and CHO delF508
Functional experiments with 37 �C-, low-temperature- (24 h, 27 �C), miglusta
37 �C) or NB-DGJ- (2 h, 100 lM, 37 �C) treated CF cells. Stimulation of CF
D, middle traces). A linear non-voltage-dependent Cl� current

was recorded only for cells cultured at 27 �C or incubated with

miglustat (see Fig. 2B and C, middle traces). This current was

fully inhibited by glibenclamide (see Fig. 2B and C, bottom

traces). Untreated or NB-DGJ treated cells failed to respond

to forskolin/genistein (see Fig. 2A and D, middle traces).

The current densities measured at +40 mV with cells stimu-

lated were 0.9 ± 0.19 pA/pF (see Fig. 2A), 28.75 ± 3.2 pA/pF

(see Fig. 2B), 14.3 ± 1.05 pA/pF (see Fig. 2C) and

1.06 ± 0.03 pA/pF (see Fig. 2D).

Iodide efflux experiments performed in untreated or NB-

DGJ treated CF15 cells confirm absence of response after for-

skolin/genistein stimulation (see Fig. 2E, top panel). On the

contrary, the bottom panel demonstrates stimulation of iodide

efflux after low-temperature, miglustat or castanospermine
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) Perforated whole-cell patch-clamp recordings with CF15 cells treated
traces: cells are unstimulated. Middle traces: stimulation by forskolin/
he corresponding current density/voltage relationships are given below

th contained calixarene (200 nM) and DIDS (200 lM). (E)–(F) Iodide
-DGJ-treated CF15 cells. Iodide effluxes are stimulated by forskolin/
iglustat-treated CF15 cells in presence of 10 lM CFTRinh-172, 100 lM
for each condition. (G) Iodide efflux experiments with CF15, CFKM4,
cells treated as indicated below each bar with a positive sign (n = 4).
t- (2 h, 100 lM, 37 �C), castanospermine denoted Cst (2 h, 100 lg/ml,
TR: forskolin (10 lM), genistein (30 lM).



Fig. 3. Cellular localization, maturation and functionality of delF508-CFTR protein in ileal mucosa from delF508 mice. (A)–(D) Ex vivo exposure of
ileal mucosa from delF508 mice to miglustat results in the appearance of CFTR protein (brown immunostaining) in the intestinal crypts. (A) WT

mice, untreated; (B) Cftr�/� mice, untreated; (C) CftrdelF508/delF508 mice, PBS treated (4 h, 37 �C); (D) CftrdelF508/delF508 mice, miglustat treated
(100 lM, 4 h, 37 �C). Scale bars: 12 lm (left), 30 lm (right). (E) Rescue of forskolin/genistein-activated Cl� current response (Isc) in ileal mucosa
from delF508-CFTR mice by miglustat (4 h, 100 lM). (top) Isc tracings showing the effect of miglustat pretreatment on the response to forskolin
(10 lM) and genistein (100 lM) of delF508-CFTR vs. WT mice. (bottom) summary data from duplicate measurements on 8 delF508-CFTR mice;
delta Isc represents the combined response to forskolin + genistein; *P < 0.05, Student t-test. (F) Detection of core-glycosylated (band B) and mature
(band C) CFTR by western blotting in wt- and low-temperature- or miglustat-treated delF508 CFTR ileum.
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treatments. Note the lower efficacy of castanospermine vs.

miglustat. Stimulation of miglustat-treated cells was inhibited

by DPC, glibenclamide and CFTRinh-172 [27] but neither by

calixarene nor DIDS (Fig. 2F) as expected for CFTR [11].

The response to forskolin/genistein after treatment with miglu-

stat or NB-DGJ was analyzed in different delF508-CFTR

expressing cell types. In all these cell types, a delF508-CFTR

dependent iodide efflux was rescued by miglustat to the same

level as cells cultured at 27 �C (see Fig. 2G). Fig. 2G also

shows that miglustat has no effect in CFTR-minus cells (e.g.,

parental CHO-K1 and mock Cos-7).
3.3. Correction of abnormal processing and function of delF508-

CFTR in CftrdelF508/delF508 mice

We studied the effect of miglustat in ileal tissues from

Cftr+/+, Cftr�/� and CftrdelF508/delF508 mice. Immunostaining

study localized CFTR in apical membrane of intestinal crypt

cells of Cftr+/+ mice (see Fig. 3A). CFTR is absent in prep-

arations from Cftr�/� mice (see Fig. 3B). On contrary of

ileal tissues from CftrdelF508/delF508 mice maintained in PBS

(see Fig. 3C), exposure to miglustat shows that delF508 pro-

teins have clearly moved to the apical membrane (see

Fig. 3D). However, the immunolocalization signal in intesti-

nal crypt cells differs from Cftr+/+; the rescued protein is also

localized throughout the cell interior (see Fig. 3D). Ex vivo

exposure of intestinal mucosa from CftrdelF508/delF508 mice to

miglustat resulted in a threefold increase in forskolin/geni-

stein-stimulated current (see Fig. 3E), indicating restoration
of transepithelial chloride secretion up to �55% of the secre-

tory response in Cftr+/+-mice (140 ± 26 lA/cm2, n = 28). This

gain in CFTR function is in good agreement with the

delF508-CFTR localization and was accompanied by an in-

crease (�1.8-fold) in the band C/band B ratio as detected by

western blotting corresponding to �12% mature WT cftr

(Fig. 3F). Functional rescue of delF508 CFTR up to WT

levels by low-temperature incubation [28] is accompanied

by a gain in mature band C CFTR protein expression from

�4% to �25% of WT.
4. Discussion

Our data show a relatively fast rescue of functional delF508-

CFTR by miglustat in human and mice epithelial cells. Miglu-

stat prevents the delF508-CFTR/calnexin interaction in the

ER suggesting that inhibition of deglucosylation of nascent

proteins may be the molecular mechanism of the miglustat ef-

fect. Importantly, inhibition of N-linked oligosaccharide trim-

ming by the glucosidase inhibitors 1-deoxynojirimycin and

castanospermine did not interfere with surface expression of

the vesicular stomatitis virus G [29] or influenza virus hemag-

glutinin [30] proteins, suggesting that these molecules, like

delF508-CFTR are transported to the cell surface despite the

presence of glucosidase inhibitors.

Loss of function and/or accumulation of mutant proteins in

the ER leads to the development of numerous protein-misfold-

ing diseases [31]. Because the molecular mechanism of
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retention of the mutant proteins associated with these diseases

may have (at least in part) in common the recognition of mu-

tant proteins by calnexin and retention in the ER, glucosidase

inhibitors might be valuable candidates for pharmacological

prevention of protein-misfolding diseases [31–34].

Miglustat is an orally bioavailable orphan drug approved in

Europe and USA for use in patients with type I Gaucher dis-

ease (Zavesca�) [15]. Human studies show that miglustat is

well tolerated at 100 or 300 mg once or three times daily

[15]. Imino sugar therapy has also been proposed for other dis-

eases [16], like Fabry disease [35].

Partial correction of CFTR channel activity may have signif-

icant clinical impact. For example, with the G480C trafficking

mutant �8% of mature CFTR protein is associated to �40%

residual cAMP-stimulated chloride secretion in mice intestine

[25]. We found that treatment with miglustat restored in CF

mice �12% mature CFTR and �55% of WT chloride secre-

tion. This is in reasonable good agreement with the estimation

that 100% chloride secretion corresponds with 20% mature

CFTR [28].

In conclusion, we found that miglustat rescues partially the

abnormal processing of functional delF508-CFTR in human

epithelial airway, tracheal gland serous and pancreatic duct

cells as well as in intestinal cells of delF508 mice. The mecha-

nism of action involves, at least in part, the prevention of

delF508/calnexin interaction in the ER. Because miglustat is

a medicament prescribed in another orphan disease, it holds

a great promise not only for CF therapy but also for an

increasing number of protein-misfolding diseases.
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